

The costs of stopping deforestation

RMAP/ Crawford School ANU

Colin Hunt School of Economics, University of Queensland

Seminar of 01/04/2010

Deforestation

Sources of greenhouse gases - countries

The world's tropical forests

Sources of carbon emissions - regional

Pledged for REDD - Copenhagen Accord

•USD30 billion for 2010-2012, rising to USD100 billion a year by 2020 (UNFCCC 2009; Clause 8).

•Australia, United States, France, Japan, Norway and Britain pledged USD 3.5 billion to support immediate steps to implement the Accord (Reuters 2009).

Why this level of commitment?

 "Reducing deforestation offers a major opportunity to reduce emissions at relatively low cost" (Stern 2006: 610).

 "REDD is clearly an inexpensive approach compared with emissions reductions in the energy sectors of industrialized countries" Boucher (2008:1).

What are the costs of REDD?

Opportunity costs of REDD

BAU -\$with REDD = \$opp. cost

BAU = business as usual REDD = Reduction in deforestation and forest degradation

Opportunity costs of REDD

\$ opp costT CO₂ avoided

\$ opp cost /T CO₂ avoided

Methodology

Opportunity cost

Tonnes CO₂ emissions avoided

First examine denominator

Changing estimates CO₂^{yr-1}, LUC

	<u>PNG</u>	Mt
•	WRI (2009)	146
•	WRI (2010)	44
•	Busch (2090)	104
•	Fox et al. (2009)	40
	Indonesia	Mt
•	WRI (2009)	2563
•	WRI (2010)	1462

Methodology

Second examine denominator

Opportunity cost

Tonnes CO₂ emissions avoided

Opportunity costs (1)

Venter et al. (2009)

Butler at al. (2008)

after-tax income of companies

net income per

hectare

before tax income of

companies.

Cost results - other studies

Overall LUC	P.V.\$/TCO ₂	
Busch (2009)	2.24	
Boucher (Asia) (2008)	2.90	
<u>Palm oil</u>	P.V.\$/TCO ₂	
Olsen and Bishop (2008)	3-7	
Venter (2009)	10-33	
Butler (2009)	12-29	

Opportunity costs (2)

Financial incentive would offset lost agricultural income to producers, "...although it would not reflect the full value chain within the country" (Stern 2006: 610).

Backward linkages

Opportunity costs (3)

Stakeholder income foregone

- Company
- Government
- Landowner/Smallholder

National income foregone

- Export income
- National income

Opportunity costs - stopping PNG logging in 2012

Net income loggers Government revenue

Landowners

xport income lational income 1.15 1.30 1.29

PV/T CO2 avoided \$US

6.22

Opportunity costs - stopping new PNG palm oil in 2012

	PV/T CO ₂ avoided, \$US	
Net income palm oil cos	9.16	
Government revenue	5.34	
Smallholder net income	3.93	
	18.43	
Export income	36.54	

36.39

National income

Likelihood of investment shifting offshore

Logging companies

• Palm oil companies

High

High

Socio-economic implications(1)

Reduced regional opportunities for income generation and employment

Socio-economic implications(2)

Encouragement of drift to urban centers

Socio-economic implications(2)

Employment and smallholder income foregone with cessation in conversion to oil palm in 2012

Figure 5

Socio-economic implications(3)

Subsistence agriculture is a source of CO₂ emissions

Socio-economic implications(4)

Opportunity cost of subsistence agriculture is low: <u>NPV/T CO₂ avoided, \$US</u>

Olsen and Bishop (2008: 5) 0-1.53 McKinsey (2009) 2.00

Socio-economic implications(5)

The implication is that subsistence farmers would be relocated to a town and issued with vouchers to buy their provisions from a supermarket!

Compensation policy for REDD

How much? National considerations

To whom? Identify stakeholders

For what? Avoid moral hazard

Next 4 slides:

Modelling of PNG logging and palm oil industries.

CO₂ emissions from logging, actual to 2008, medium BAU projected to 2025 and abated from 2012

Figure 6

Income from raw log exports and domestic processing, actual to 2008, medium BAU projected to 2025

Figure 7

CO₂ emissions from oil palm, actual to 2008, medium BAU projected to 2037 and abated from 2012

Opportunity costs of cessation in expansion of oil palm 2012-2037, nominal values

